
Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering

Cheng Sun1 Jaesung Choe1 Charles Loop1 Wei-Chiu Ma2 Yu-Chiang Frank Wang1,3

1NVIDIA 2Cornell University 3National Taiwan University

LPIPS

FPS

(a) Volume rendering by rasterizing sparse voxels. (b) Novel-view rendering on Mip-NeRF360 scenes. (c) 2D-to-3D made easy.

3DGS
variants

NeRF
variants

Neural-free
voxel grids

 * The actual voxel sizes are much smaller.

Ours 2D VFM feature 3D VFM feature

2D semantic 3D semantic

TSDF Fusion
Marching Cubes

 *Our FPS comparison to 3DGS is highly scene dependent.

Figure 1. We propose SVRaster, a novel framework for multi-view reconstruction and novel view synthesis. (a) Sparse voxel represen-
tation effectively captures the volume density and radiance field of the scene, without the need for neural networks, 3D Gaussians, and
sparse-points prior. (b) Using our customized sparse voxel rasterizer, we can learn the underlying 3D scene efficiently and achieve state-of-
the-art performance in both rendering quality and speed. (c) Notably, lifting 2D modal to the trained sparse voxels is simple and efficient by
integrating the classic Volume Fusion [7, 8, 36]. We show examples of vision foundation model feature field from RADIO [40], semantic
field from Segformer [55], and signed distance field from rendered depth, making it flexible and suitable for a wide range of applications.

Abstract

We propose an efficient radiance field rendering algorithm
that incorporates a rasterization process on adaptive sparse
voxels without neural networks or 3D Gaussians. There
are two key contributions coupled with the proposed sys-
tem. The first is to adaptively and explicitly allocate sparse
voxels to different levels of detail within scenes, faithfully
reproducing scene details with 655363 grid resolution while
achieving high rendering frame rates. Second, we cus-
tomize a rasterizer for efficient adaptive sparse voxels ren-
dering. We render voxels in the correct depth order by us-
ing ray direction-dependent Morton ordering, which avoids
the well-known popping artifact found in Gaussian splat-
ting. Our method improves the previous neural-free voxel
model by over 4db PSNR and more than 10x FPS speedup,
achieving state-of-the-art comparable novel-view synthesis
results. Additionally, our voxel representation is seamlessly
compatible with grid-based 3D processing techniques such
as Volume Fusion, Voxel Pooling, and Marching Cubes, en-
abling a wide range of future extensions and applications.
Code: github.com/NVlabs/svraster

1. Introduction

Gaussian splatting [20] has emerged as one of the most
promising solutions for novel view synthesis. It has drawn
wide attention across multiple communities due to its ex-
ceptional rendering speed and ability to capture the nuanced
details of a scene. Nevertheless, Gaussian splatting in its
base form has two key limitations: first, sorting Gaussians
based on their centers does not guarantee proper depth or-
dering. It may result in popping artifacts [39] (i.e., sud-
den color changes for consistent geometry) when chang-
ing views. Second, the volume density of a 3D point is
ill-defined when covered by multiple Gaussians. This am-
biguity makes surface reconstruction non-trivial.

On the other hand, grid representations inherently avoid
these issues—both ordering and volume are well-defined.
However, due to ray casting, the rendering speed of these
methods [4, 5, 24, 45, 46, 54] is slower than that of Gaussian
Splatting. This raises the question: is it possible to take
the best of both worlds? Can we combine the efficiency of
Gaussian splatting with the well-defined grid properties?

Fortunately, the answer is yes. Our key insight is to re-
visit voxels—a well-established primitive with decades of

1

https://github.com/NVlabs/svraster

history. Voxel representations are inherently compatible
with modern graphics engines and can be rasterized effi-
ciently. Additionally, previous work has demonstrated their
ability to model scene volume densities, despite through
volume ray casting. This positions voxels as the perfect
bridge between rasterization and volumetric representation.
However, naively adopting voxels does not work well [11].
Since a scene may consist of different levels of detail.

With these observations in mind, we present SVRaster,
a novel framework that combines the efficiency of rasteri-
zation in 3DGS with the structured volumetric approach of
grid-based representations. SVRaster leverages (1) multi-
level sparse voxels to model 3D scenes and (2) implements a
direction-dependent Morton order encoding that facilitates
the rasterization rendering from our adaptive-sized sparse
voxel representation. Our rendering is free from popping
artifacts because the 3D space is partitioned into disjoint
voxels, and our sorting ensures the correct rendering order.
Moreover, thanks to the volumetric nature and neural-free
representation of SVRaster, our sparse voxel grid can be
easily and seamlessly integrated with classical grid-based
3D processing algorithms.

We show that our method is training fast, rendering fast,
and achieves novel-view synthesis quality comparable to
the state-of-the-art. We also integrate Volume Fusion, Voxel
Pooling, and Marching Cubes operations into our adaptive
sparse voxels, which showcases promising results of mesh
extraction and 2D foundation feature fusion.

2. Related Work
Differentiable volume rendering has made significant
strides in 3D scene reconstruction and novel-view synthesis
tasks. Neural Radiance Fields (NeRF) [32] laid the founda-
tion for this progress by optimizing a volumetric function,
parameterized by multi-layer perceptrons (MLPs) to encode
both geometry and appearance through differential render-
ing. Subsequent studies focus on accelerating speed by
decomposing large MLPs into grid-based representations,
with a shallow MLP typically still being employed. Several
grid representations have been explored—dense grids [45],
factorized grids [5], tri-planes [4], and hash grids [34].

In particular, our method is closely related to sparse
voxel grid representations. Sparse Voxel Octrees [22] and
VDB trees [35] are commonly used to manage sparse vox-
els and facilitate rendering. In contrast, our sparse vox-
els are stored in a 1D array without advanced data struc-
tures. Our rasterizer with the proposed direction-dependent
Morton order ensures correct rendering order. To model
volumes in sparse leaf nodes, different strategies exist,
such as low-resolution 3D grid [35, 53] or implicit neural
field [25, 47]. Our leaf node is a single voxel with explicit
density and color parameters, like Plenoxels [11]. Regard-
ing voxel levels, previous methods allocate voxels to a tar-

get level [11, 25, 47, 59] or use a shallow tree [35, 53]. Our
voxels can adaptively fit into different levels across the en-
tire tree depth, maximizing flexibility and scalability.

Another scalability issue of the previous grid-based
methods is that they still use some sort of dense 3D grid in
the field of novel-view synthesis. For instance, dense occu-
pancy grids [5, 23, 34, 45] for free-space skipping or dense
pointer grid [11] to support sparse voxel lookup. We do not
use any 3D dense data structures.

3D Gaussian Splatting (3DGS) [20] takes a different ap-
proach by representing scenes with 3D Gaussian primitives
and using rasterization for rendering, achieving state-of-the-
art trade-off for quality and speed. Our work is inspired
by the efficiency of using a rasterizer by 3DGS. However,
3DGS exhibits view-inconsistent popping artifacts due to
inaccurate rendering order and primitive overlapping. Some
recent works mitigate this artifact [33, 39], but completely
resolving it significantly harms rendering speed [28]. Our
method does not suffer from the popping artifact. Typi-
cally, 3DGS [20] initializes Gaussians from the triangulated
points via COLMAP [43], which is especially critical for
unbounded scenes. The sparse points geometry is also em-
ployed to guide the training of volumetric representations
and has shown improvement in some NeRF-based meth-
ods [9, 12]. In this work, we do not use the sparse points.

Mesh reconstruction is an important extended topic for
both volumetric-based and GS-based methods. Recent
3DGS variants [14, 16] with proper regularization have
shown a good speed-accuracy trade-off. However, di-
rectly extracting meshes from 3DGS remains challeng-
ing, so these methods still rely on volumetric-based post-
processing algorithms to extract meshes. NeRF vari-
ants [24, 46, 50, 51, 54, 56] improve surface quality by ren-
dering a signed distance field (SDF) instead of density field.
The well-defined volume makes it straightforward to extract
a mesh from the isosurface. Our sparse voxels are also a
volumetric representation. Though our voxel also follows
volumetric representation focusing on the density field, we
still can achieve promising accuracy with minimal time.

For efficient rendering, another line of research is to
convert (or distill) the geometry and appearance of a high-
quality but slow model into other efficient kind of represen-
tations such as smaller MLPs [41, 49], meshes [42, 52, 57],
grids [10], or the recent Gaussians [37]. Typically, the pow-
erful Zip-NeRF [3] is employed as the teacher model which
requires hours of training per scene. Our volumetric repre-
sentation could enable training-free conversion from a large
implicit field, which is however out of our current scope.

Finally, the sparse voxel is also a widely-used represen-
tation for 3D processing [7, 8, 19, 26, 36, 38] and under-
standing [6, 13, 53]. We mainly focus on rendering in this
work while we believe that adapting our method to these
techniques is a promising future direction.

2

()
Ray distance

Density

(a) (b)

Figure 2. Sparse voxels scene representation. (Left) We allocate
voxel under an Octree layout. Each voxels has its own Spherical
Harmonic coefficient for view-dependent appearance. The color
field is approximated as a constant inside a voxel when render-
ing a view for efficiency. The density field is trilienarly varied
inside a voxel and is modeled by the density values on the corner
grid points (i.e., the black dots •) of each voxel. The grid points
densities are shared between adjacent voxels. (Right) We evenly
sample K points inside the segment of ray-voxel intersection to
compute volume integration for its alpha value contributing to the
pixel ray. See Sec. 3.1.1 for details.

3. Approach
We present our approach as follows. First in Sec. 3.1, we
introduce our sparse voxels scene representation and our
rasterizer for rendering sparse voxels into pixels. Later in
Sec. 3.2, we describe the progressive scene optimization
strategy, which is designed for faithfully reconstructing the
scene from multi-view images using our sparse voxels.

3.1. Sparse Voxels Rasterization
Recent neural radiance field rendering approaches, such as
NeRF [32] and 3DGS [20] variants, use the following alpha
composition equation to render a pixel’s color C:

C =
∑N

i=1
Ti · αi · ci , Ti =

∏i−1

j=1
(1− αj) , (1)

where αi ∈ R∈[0,1] and ci ∈ R3
∈[0,1] are alpha and view-

dependent color at the i-th sampled point or primitive on
the pixel-ray. The quantity Ti is known as the transmittance.
At a high-level, the difference between each method comes
down to: i) how they find the N points or primitives to com-
posite a pixel-ray and ii) how the rgb and alpha values are
determined from their scene representations.

Our sparse-voxel method follows the same principle. In
Sec. 3.1.1, we provide details of our sparse voxels scene
representation and how the αi and ci in Eq. (1) are com-
puted from a voxel. In Sec. 3.1.2, we present our rasterizer,
that gathers the N voxels to be composited for each pixel.

3.1.1. Scene Representation
We first describe the grid layout for allocating our sparse
voxels and then derive the alpha value, view-dependent

color, and other geometric properties needed for the com-
posite rendering of a voxel.

Sparse voxel grid. Our SVRaster constructs 3D scenes
using a sparse voxel representation. We allocate voxels
following an Octree space partition rule (i.e., Octree lay-
out as illustrated in Fig. 2a) for two reasons necessary for
achieving high-quality results. First, it facilitates the correct
rendering order of voxels with various sizes (Sec. 3.1.2).
Second, we can adaptively fit the sparse voxels to different
scene level-of-details (Sec. 3.2). Note that our representa-
tion does not replicate a traditional Octree data structure
with parent-child pointers or linear Octree. Specifically, we
only keep voxels at the Octree leaf nodes without any ances-
tor nodes. Our sorting-based rasterizer will project voxels
to image space and guarantee all voxels are in the correct
order when rendering. In sum, we store individual voxels
in arbitrary order without the need to maintain a more com-
plex data structure, thanks to the flexibility provided by our
rasterizer.

We choose a maximum level of detail L (= 16 in this
work) that defines a maximum grid resolution at (2L)3. Let
ws ∈ R be the Octree size and wc ∈ R3 be the Octree
center in the world space. The voxel index v = {i, j, k} ∈
[0, . . . , 2L−1]3 together with a Octree level l ∈ [1, L] (l = 0
represent root node and is not used) define voxel size vs and
voxel center vc as:

vs = ws · 2−l , vc = wc − 0.5 ·ws + vs · v . (2)

Internally, we map the grid index to its Morton code us-
ing a well-known bit interleaving operation in the low-level
CUDA implementation. Please see supplementary materi-
als for more details.

Voxel alpha from density field. Next, we present details
for the geometry and appearance modeling of each voxel
primitive. For scene geometry, we use eight parameters cor-
responding to the voxel corners to model a trilinear density
field inside each voxel, denoted as vgeo ∈ R2×2×2. Shar-
ing corners among adjacent voxels results in a continuous
density field.

We also need an activation function to ensure a non-
negative density value for the raw density from vgeo. For
this purpose, we use exponential-linear activation:

explin(x) =

{
x if x > 1.1

exp
(

x
1.1 − 1 + ln 1.1

)
otherwise

, (3)

which approximates softplus but is more efficient to com-
pute. For a sharp density field inside a voxel, we apply the
non-linear activation after trilinear interpolation [18, 45].

To derive the alpha value of a voxel contributing to the
alpha composition formulation in Eq. (1), we evenly sam-
ple K points in the ray segment of ray-voxel intersection
as depicted in Fig. 2b. The equation follows the numerical

3

Voxels Projection
& Tiles assignment

Voxels
pre-processing

Per-tile voxels
sorting

Rendering pixels

1. Gather voxel grid
points densities.

2. Voxel color.
3. Voxel normal.

1. Voxel alpha.
2. Voxel depth.
3. Alpha composition

for pixels.

Figure 3. Rasterization procedure. Refer to Sec. 3.1.2 for details.

integration for volume rendering as in NeRF [30, 32]:

α = 1−exp

(
− l

K

K∑
k=1

explin (interp (vgeo,qk))

)
, (4)

where l is the ray segment length, qk is the local voxel co-
ordinate of the k-th sample point, and interp(·) indicates
trilinear interpolation.

Voxel view-dependent color from SHs. To model view-
dependent scene appearance, we use Nshd degree SH. For
increased efficiency, we assume the SH coefficients stay
constant inside a voxel, denoted as vsh ∈ R(Nshd+1)2×3.
We approximate voxel colors as a function of the direction
from the camera position ro to the voxel center vc instead
of individual ray direction rd for the sake of efficiency fol-
lowing 3DGS:

c = max(0, sh eval(vsh,normalize(vc − ro))) , (5)

which is the view-dependent color intensity of the voxel
contributing to the pixel composition Eq. (1). Due to the ap-
proximation, the resulting SH color of a voxel can be shared
by all covered pixels in the image rather than evaluating the
SH for each intersecting ray.

Voxel normal. The rendering of other features or proper-
ties is similar to rendering a color image by replacing the
color term c in Eq. (1) with the target modality like the nor-
mal of a voxel density field. For rendering efficiency, we
assume the normal stays constant inside a voxel, which is
represented by the analytical gradient of the density field at
the voxel center:

n⃗ = normalize (∇q interp (vgeo,qc)) , (6)

where qc = (0.5, 0.5, 0.5) and the closed-form equations
for forward and backward passes are in the supplemen-
tary material. Similar to the SH colors, the differentiable
voxel normals are computed once in pre-processing and are
shared by all the intersecting rays in the image.

Voxel depth. Unlike colors and normals, the point depths
to composite is efficient to compute so we do the same K
points sampling as in the voxel alpha value in Eq. (4) for
a more precise depth rendering. We manually expand and
simplify the forward and backward computation for small
number of K in our CUDA implementation. Please refer to
supplementary materials for details.

(a)

2 3

0 1

3 2

1 0

0 1

2 3

1 0

3 2

100

200

330

310
212 213

210 211

000

100

200

330

310
212 213

210 211

000

2 3

0 1

3 2

1 0

0 1

2 3

1 0

3 2

(b)

2 3

0 1

3 2

1 0

0 1

2 3

1 0

3 2

100

200

330

310
212 213

210 211

000

100

200

330

310
212 213

210 211

000

2 3

0 1

3 2

1 0

0 1

2 3

1 0

3 2
(c)

Figure 4. Illustration of the rendering order. (a) In both cases,
the smaller voxels should be rendered first but they will arranged
behind the larger voxels if using voxel centers or the nearest cor-
ners as the sorting order. (b) We show the four types of Morton
order under the 2D world. The voxel rendering order under an Oc-
tree node is depend on which world quadrant the ray direction is
pointing to. (c) An toy example of sorting the Morton order encod-
ing. All the ray directions going toward the up-right quadrant can
use the sorted voxels for a correct rendering order. See Sec. 3.1.2
for details.

3.1.2. Rasterization Algorithm
The overview of our sparse voxel rasterization procedure
is depicted in Fig. 3. We build our sorting-based raster-
izer based on the highly efficient CUDA implementation of
3DGS [20]. The procedure is detailed in the following.

Projection to image space. The first step of rasterization
is projecting sparse voxels onto image space and assigning
the voxels to the tiles (i.e., image patches) they cover. In
practice, we project the eight corner points of each voxel.
The voxel is assigned to all tiles overlapped with the axis-
aligned bounding box formed by the projected eight points.

Pre-processing voxels. For active voxels assigned to tiles
of the target view, we gather their densities vgeo from
the grid points, compute view-dependent colors from their
spherical harmonic coefficients with Eq. (5), and derive
voxel normals by Eq. (6). The pre-processed voxel prop-
erties are shared among all pixels during rendering.

Sorting voxels. For accurate rasterization, primitive ren-
dering order is important. Similar to the challenge in
3DGS [20], using primitive centers or their closest distance
to the camera can produce incorrect ordering, producing
popping artifacts [39]. We show two incorrect ordering
results using naive sorting criteria in Fig. 4a. Thanks to
the Octree layout (Sec. 3.1.1), we can sort by Morton or-
der using our sparse voxels representation. As illustrated
in Fig. 4b, we can follow certain types of Morton order to
render the voxels under an Octree node for correct order-
ing. The type of Morton order to follow is solely dependent
on the positive/negative signs of the ray direction (the ray
origin doesn’t matter). That is to say, we have eight permu-
tations of Morton order for different ray directions in the 3D
space. Finally, the generalization to multi-level voxels can

4

be proved by induction. An ordering example in 2D with
three levels is depicted in Fig. 4c.

The sorting is applied for each image tile. In case all
the pixels in a tile share the same ray direction signs, we
can simply sort the assigned voxels by their type of Morton
order. We handle the corner case when multiple Morton
orders are required in supplementary materials.

Rendering pixels. Finally, we proceed with alpha com-
position, Eq. (1), to render pixels. In our case, the N
primitives blend of a pixel-ray depends on the number of
sparse voxels assigned to the tile that the pixel-ray belongs
to. The computation of the alpha, color, and other geo-
metric properties from our sparse voxels are described in
Sec. 3.1.1. When rendering sparse voxels for a pixel-ray,
we compute ray-aabb intersection to determine the ray seg-
ment to sample (for voxel alpha in Eq. (4)) and skip some
non-intersected sparse voxels. We do early termination of
the alpha composition if the transmittance of a sparse voxel
is below a threshold Ti<hT.

Anti-aliasing. To mitigate aliasing artifacts, we render in
hss times higher resolution and then apply image downsam-
pling to the target resolution with an anti-aliasing filter.

3.2. Progressive Sparse Voxels Optimization
In this section, we describe the procedure to optimize a 3D
scene from the input frames with known camera parameters
using our SVRaster presented in Sec. 3.1.

Voxel max sampling rate. We first define the maximum
sampling rate vrate of each voxel on the training images,
which reflects the image region a voxel can cover. A smaller
vrate indicates that the voxel is more prone to overfitting
due to less observation. We use vrate in our voxel initializa-
tion and subdivision process described later. Given Ncam

training cameras, we estimate the maximum sampling rate
of a voxel as follows with visualization in Fig. 5a:

vrate = maxNcam
i

vs

v
(i)
interval

, (7a)

v
(i)
interval = (vc − r(i)o)⊺ℓ(i)︸ ︷︷ ︸

Voxel z-distance

·
tan

(
0.5 · θ(i)fov-x

)
0.5 ·W (i)︸ ︷︷ ︸

Unit-distance pixel size

, (7b)

where ℓ is camera lookat vector, θfov-x is camera horizontal
field of view, and W is image width. The sampling rate
indicates the estimated number of rays along the image’s
horizontal axis direction that may hit the voxel.

3.2.1. Scene Initialization
Without employing an additional prior, we initialize all
the parameters to constant. We start with volume den-
sity approaching zero by setting voxel raw density to a
negative number hgeo so that the initial activated density
explin(hgeo)≈0. We set the SH coefficients to zero for

(Pixel length in unit-distance plane)

(a)

1-st background shell

2-nd background shell

Main region

(b)

Figure 5. Visualization of voxel sampling rate and grid lay-
out initialization. (a) We visualize the voxel sampling rate de-
fined in Eq. (7). (b) We depict the foreground main region and
the background region under different shell levels. In unbounded
scenes, we apply different grid layout initialization strategies for
foreground and background regions. See Sec. 3.2.1 for details.

non-zero degrees and set the view-independent zero-degree
component to yield gray color (i.e., intensity equal 0.5). We
detail the Octree grid layout initialization in the following.

Bounded scenes. In case the scenes or the objects to re-
construct are enclosed in a known bounded region, we sim-
ply initialize the layout as a dense grid with hlv levels and
remove voxels unobserved by any training images. The
number of voxels is ≤ (2hlv)3 after initialization.

Unbounded scenes. For the unbounded scenes, we first
split the space into the main and the unbounded background
regions, depicted in Fig. 5b, each with a different heuristic.
We use the training camera positions to determine a cuboid
for the main region. The cuboid center is set to the average
camera positions and the radius is set to the median dis-
tance between the cuboid center and the cameras. The same
as the bounded scenes, we initialize a dense grid with hlv

levels for the main region. For the background region, we
allocate hout level of background shells enclosing the main
region, which means that the radius of the entire scene is
2hout of the main region. In each background shell level,
we start with the coarsest voxel size, i.e., 43−23=56 vox-
els in each shell level. We then iteratively subdivide shell
voxels with the highest sampling rate and remove voxels
unobserved by any training cameras. The process repeats
until the ratio of the number of voxels in the background
and the main regions is hratio. The number of voxels is
≤ (1 + hratio)(2

hlv)3 after initialization.

3.2.2. Adaptive Pruning and Subdivision
The initialized grid layout only coarsely covers the entire
scene that should be adaptively aligned to different levels-
of-detail for the scene during the training progress. We ap-
ply the following two operations every hevery training iter-
ations to achieve this purpose.

Pruning. We compute the maximum blending weight
(Tiαi) from Eq. (1) of each voxel using all the training cam-
eras. We remove voxels with maximum blending weight

5

lower than hprune.

Subdivision. Our heuristic is that a voxel with a larger
training loss gradient indicates that the voxel region requires
finer voxels to model. Specifically, we accumulate the sub-
division priority as the following:

vpriority =
∑

r∈R

∥∥∥∥α(r) · ∂L(r)∂α(r)

∥∥∥∥ , (8)

where R is the set of all training pixel rays throughout the
hevery iterations and L(r) is the training loss of the ray.
The gradient is weighted by alpha values contributed from
the voxel to the ray. Higher vpriority indicates higher sub-
division priority. To prevent voxels from overfitting few
pixels, we set the priority to zero for voxels with maxi-
mum sampling rate lower than a sampling rate threshold
vrate < 2hrate. Finally, we select the voxels with prior-
ity above the top hpercent percent to subdivide, i.e., the total
number of voxels is increased by (hpercent ·(8−1)) percent.
Note that we only keep the leaf nodes in the Octree layout
so we remove the source voxels once they are subdivided.

When voxels are pruned and subdivided, the voxel
Spherical Harmonic (SH) coefficients and the grid point
densities need to be updated accordingly. The SH coeffi-
cients are simply pruned together with voxels and dupli-
cated to the subdivided children voxels. Grid point densi-
ties are slightly more complex as the eight voxel corner grid
points are shared between adjacent voxels (Fig. 2). We re-
move a grid point only when it does not belong to any voxel
corners. When subdividing, we use trilinear interpolation to
compute the densities of the new grid points. The duplicated
grid points are merged and their densities are averaged.

3.2.3. Optimization objectives
We use MSE and SSIM as the photometric loss between the
rendered and the ground truth images. The overall training
objective is summarized as:

L = Lmse + λssimLssim

+ λTLT + λdistLdist + λRLR + λtvLtv , (9)

where λ are the loss weights, LT encourages the final ray
transmittances to be either zero or one, Ldist is the distortion
loss [2], LR is the per-point rgb loss [45], and Ltv is the total
variation loss on the sparse density grid. In mesh extraction
task, we also add the depth-normal consistency loss from
2DGS [16]:

Lmesh = λn-dmeanLn-dmean + λn-dmedLn-dmed , (10)

where both losses encourage alignment between rendered
normals and depth-derived normals from mean and median
depth. More details are in the supplementary materials.

3.2.4. Sparse-voxel TSDF Fusion and Marching Cubes
Our sparse voxels can be seamlessly integrated with grid-
based algorithms. To extract a mesh, we implement March-

GT Ours 3DGS 3DGSOursGT

Figure 6. A qualitative comparison with 3DGS [20]. Our result
here corresponding to the base version in Tab. 1. We achieve sim-
ilar visual quality comparing to 3DGS. Note that 3DGS use the
coarse geometry from SfM while we do not rely on this prior.

Figure 7. Visualization of the reconstructed surface. We show
the rendering images, normal maps, and the final meshes on
Tanks&Temples and DTU datasets. Note that we only model the
scene with density field and do not use the coarse geometry prior
from SfM sparse points in this work.

ing Cubes [27] to extract the triangles of an isosurface over
density from the sparse voxels. The duplicated vertices
from adjacent voxels are merged to produce a unique set
of vertices. When the adjacent voxels belong to different
Octree levels, the extracted triangle may not be connected
as the density field is not continuous for voxels in differ-
ent levels. Such discontinuities can be removed by simply
subdividing all voxels to the finest level.

Deciding the target level set for extracting the isosurface
can be tricky for the density field. Instead, we implement
sparse-voxel TSDF-Fusion [7, 8, 38] to compute the trun-
cated signed distance values of the sparse grid points. We
can then directly extract the surface of the zero-level set us-
ing the former sparse-voxel Marching Cubes. Future exten-
sions of our method could directly model signed distance
fields following NeuS [50] and VolSDF [56]. The sparse-
voxel TSDF-Fusion can still be beneficial to directly initial-
ize our sparse voxel representation from sensor depth.

4. Experiments
4.1. Implementation Details
We use the following implementation details except stated
otherwise. We start the optimization from empty space with
raw density set to hgeo=−10. The initial Octree level is
hlv=6 (i.e., 643 voxels) for the bounded scenes and the fore-
ground main region of the unbounded scenes. To model

6

Mip-NeRF360 dataset

Method FPS↑ Tr. Time↓ LPIPS↓ PSNR↑ SSIM↑
NeRF [32] <1 ∼day 0.451 23.85 0.605
M-NeRF [1] <1 ∼day 0.441 24.04 0.616
M-NeRF360 [2] <1 ∼day 0.237 27.69 0.792
Zip-NeRF [3] † <1 ∼hrs 0.187 28.55 0.828
Plenoxels [11] <10 ∼30m 0.463 23.08 0.626
INGP [34] ∼10 ∼5m 0.302 25.68 0.705
3DGS [20] † 131 24m 0.216 27.45 0.815
Ours fast-rend 258 9m 0.210 26.87 0.804
Ours fast-train 131 4.5m 0.199 27.08 0.816
Ours 121 15m 0.185 27.33 0.822
† Re-evaluate on our machine.

Table 1. Novel-view synthesis results comparison on Mip-
NeRF360 dataset [2]. The results are averaged from 4 indoor
scenes and 5 outdoor scenes. 3DGS uses the sparse points prior
from COLMAP [43], whereas the other methods and ours do not.

Tanks&Temples Deep Blending

Method FPS↑ LPIPS↓ PSNR↑ FPS↑ LPIPS↓ PSNR↑

Plenoxels [11] 13 0.379 21.08 11 0.510 23.06
INGP [34] 14 0.305 21.92 3 0.390 24.96
M-NeRF360 [2] <1 0.257 22.22 <1 0.245 29.40
3DGS [20] † 180 0.176 23.75 140 0.244 29.60
Ours 125 0.144 23.04 366 0.228 29.84
† Re-evaluate on our machine.

Table 2. Comparison on Tanks&Temples [21] and Deep Blend-
ing [15] datasets. We follow 3DGS [20] to use two outdoor scenes
from Tanks&Temples and two indoor scenes from Deep Blending.

GT Ours 3DGS

Figure 8. Failuare case. On scenes with severe exposure variation
of training views, our method struggles and produces clear bound-
ary of different brightnesses and allocates many floaters. 3DGS on
the other hand is less sensitive to photometric variation of GT. This
explains our worse PSNR and FPS on Tanks&Temples in Tab. 2.

unbounded scenes, we use hout=5 background shell lev-
els with hratio=2 times the number of foreground voxels
(Sec. 3.2.1 and Fig. 5). The early ray stopping thresh-
old is set to hT=1e−4 and the supersampling scale is set
to hss=1.5. Inside each voxel, we sample K=1 point for
novel-view synthesis and K=3 points for mesh reconstruc-
tion task. We train our model for 20K iterations. The voxels
are pruned and subdivided every hevery=1,000 iterations.
The pruning threshold hprune is linearly scale from 0.0001
to 0.05 and the subdivision percentage is hpercent=5. More

FPS at higher res.↑
Method Peak GPU mem.↓ Model size↓ 1x 2x 3x

3DGS 1.8GB 0.7GB 131 69 39
Ours 3.9GB 1.8GB 121 103 69
Table 3. Memory, model size, and high-res FPS. The results are
averaged on Mip-NeRF360 dataset. The standard 1x evaluation
resolution have about 1–1.6M pixels per frame.

details are provided in the supplement.
We use the standard LPIPS [60], SSIM, and PSNR met-

rics to evaluate novel-view quality. We directly employ the
LPIPS implementation from prior work [20], which uses
[0, 1] image intensity range with VGG [44] network. For
mesh accuracy, we follow the benchmarks to use F-score
and chamfer distance. We use the test-set images to mea-
sure the FPS on a desktop computer with a 3090 Ti GPU.

4.2. Novel-view Synthesis
In Tab. 1, we show the quantitative comparison on the
MipNeRF-360 dataset. We also provide a fast-rendering
variant with >2x FPS by setting hss=1.5, hprune=0.15, and
a fast-training variant with >3x training speedup by scaling
all iteration related hyperparameter by 0.3. Both fast vari-
ants only reduce quality moderately.

Our rendering speed is comparable to 3DGS on average.
However, FPS varies significantly across scenes (see sup-
plementary for detailed per-scene results). Several differ-
ences impact speed between our method and 3DGS. For in-
stance, 3DGS sorts 32-bit floats, while we sort 48-bit Mor-
ton codes (16 levels, each with 3 bits) for primitive order-
ing. We also avoid the overhead of computing inverse co-
variance matrices from quaternions and scaling parameters.
We directly intersect rays with voxels in 3D space, whereas
3DGS approximates the projection of 3D Gaussians to 2D
via a linear affine transform. Finally, Gaussian distributions
decay gradually to zero, while our post-activation [18, 45]
voxel density field can be arbitrarily sharp. As a result, the
average numbers of primitives contributing to a pixel inten-
sity is 63 for 3DGS and 27 for us. The influence of these
factors on rendering speed is scene-dependent.

Regarding rendering quality metrics, our method
achieves significantly better LPIPS than 3DGS and even
surpasses Zip-NeRF. This can be explained by the quali-
tative comparison in Fig. 6 where our method recover finer
details. The SSIM comparison results with 3DGS is more
scene-dependent. SSIM comparisons with 3DGS are more
scene-dependent, while PSNR tends to favor 3DGS, as it
prefers smoother rendering in uncertain regions. More vi-
sual comparisons are in the supplementary.

Our method uses much more voxel primitives than Gaus-
sian, resulting in larger model size and requires more GPU
memory as shown in Tab. 3. Interestingly, our high FPS is

7

Resolution of main 2563 5123 10243 adaptive Plenoxels 6403

LPIPS↓ 0.444 0.326
OOM

0.200 0.452
PSNR↑ 23.98 25.37 28.01 23.29
FPS↑ 457 190 171 <10

Table 4. Ablation experiments of adaptive and uniform voxel
sizes. The results are evaluated on the indoor bonsai and the out-
door bicycle scenes from MipNeRF-360 dataset. The resolutions
at the first row indicate the final grid resolution of the main fore-
ground cuboid. Plenxoels is the previous fully-explicit voxel grid
approach. Please refer to Sec. 4.3 for more discussion.

more scalable to higher resolution rendering perhaps due to
the fewer contributing primitives per pixel.

We compare results on two more datasets in Tab. 2. On
Deep Blending [15] dataset, we achieve much better speed
and quality than 3DGS. On Tanks&Temples dataset [21],
despite having better LPIPS, our PSNR and FPS are worse
than 3DGS. The failure results are shown in Fig. 8 where
the training views have large exposure variation. As a re-
sult, our method produces a clear brightness boundary in
the scene with many floaters that slow down our rendering.

4.3. Ablation Studies
The rasterization process improves the rendering speed of
sparse voxels, while the key to achieve high-quality results
is the adaptive voxel size for different levels of detail. We
show an ablation experiment in Tab. 4. Instead of sub-
dividing voxels adaptively, the uniform voxel size variant
subdivides all the voxels at certain training iterations until
the grid resolution of the foreground main region reaches
2563, 5123, or 10243. We also align the background and
the pruning setup where the details are deferred to the sup-
plementary. As shown in the table, the quality of uniform
voxel size in 5123 resolution is much worse than the adap-
tive voxel size under similar FPS. Our machine with 24GB
GPU memory fails to reach 10243 grid resolution despite
the voxels being pruned and sparse. Plenoxels [11] renders
sparse voxels by ray casting and sampling following NeRF.
Their FPS is significantly lower than our rasterization-based
sparse voxel rendering. As they use a dense 3D pointer
grid to support point sampling on rays, the model scalabil-
ity for the unbounded background region is thus limited. To
workaround, they apply a multi-sphere image with 64 lay-
ers to model the background. Conversely, we set the scene
size as 32x larger (hout=5) than the foreground cuboid and
direct model the entire scene by our sparse voxels. As a
result, our uniform size variant with 5123 foreground reso-
lution still outperforms Plenoxels with 6403 grid.

In our rasterizer, we use direction-dependent Morton or-
der to ensure the sorting of voxels from different levels is
correct. However, like the case in 3DGS, the popping arti-
fact by the incorrect order is not a major factor in the nu-
merical results. Instead, we provide more visualization in

Tansk&Temples DTU

Method Geom. Init. F-score↑ Tr. time↓ Cf.↓ Tr. time↓
NeRF [32] Density Random - - 1.49 hrs
NeuS [50] SDF Sphere 0.38 hrs 0.84 hrs
Voxurf [54] SDF Sphere - - 0.76 15m
Neuralangelo [24] SDF Sphere 0.50 hrs 0.61 hrs
3DGS [20] Gaussians SfM pts. 0.19 14m 1.96 11m
SuGaR [14] Gaussians SfM pts. 0.09 ∼1h 1.33 ∼1h
2DGS [16] Gaussians SfM pts. 0.32 16m 0.80 11m
Ours Density Constant 0.40 11m 0.76 5m

Table 5. Mesh results comparison on the Tanks&Temples [21]
and DTU [17] datasets. Our method with volume density and
constant field initialization achieves good accuracy-time trade-off
on the unbounded-level and object-level datasets.

the supplementary videos to show its effect. See more abla-
tion studies in the supplementary materials.

4.4. Mesh Reconstruction
We extract mesh by adapting TSDF-Fusion [36] and March-
ing Cubes [27] into our sparse voxels. The results com-
parison on the large-scale Tanks&Temples and the object-
scale DTU datasets is provided in Tab. 5, where our method
achieves a good balance of accuracy and training time on
both datasets. See qualitative examples in Fig. 7 and the
supplementary materials. We find that our current method
tends to produce unnecessary geometric bumps for texture
details. Future work could improve surface smoothness by
adapting our density field for direct signed distance field
modeling or incorporating SfM sparse points prior.

4.5. 2D Feature Fusion
We showcase some results in Fig. 1, where we fuse 2D se-
mantic segmentation and high-dimensional foundation fea-
tures into our sparse voxels using Voxel Pooling and Vol-
ume Fusion. The multi-view ensemble smooths the incon-
sistent 2D predictions, while our detailed 3D geometry en-
ables higher-resolution rendering of 2D features. See more
results in the released code.

5. Conclusion
This work presents a novel differentiable radiance field ren-
dering system that integrates an efficient rasterizer with a
multi-level sparse voxel scene representation. We recon-
struct a scene from the multi-view input images by adap-
tively fitting the sparse voxels into different levels-of-detail.
The results reveal that fully explicit voxel models, without
neural networks or Gaussians, can achieve state-of-the-art
comparable novel-view rendering speed and quality. The
key breakthrough is overcoming the scalability constraint
of voxel grids with adaptive sparse voxels and improving
rendering speed through rasterization. We believe that in-
corporating our method with classical 3D processing algo-
rithm [7, 8, 19, 26, 38] and 3D neural network [6, 13, 53]
are promising future directions.

8

Acknowledgements. We thank Min-Hung Chen and
Yueh-Hua Wu for helpful paper proofreading.

Updates.

• Mar 2025: (1) Revise literature review. (2) Add Scan-
net++ results.

• Feb 2025: (1) Code release. (2) Add more volume fusion
examples. (3) Novel-view synthesis quality improved. (4)
Provide fast rendering and fast training variants. (5) Dis-
cuss results more.

• Dec 2024: Paper release on arxiv.

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, 2021. 7

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In CVPR, 2022. 6, 7, 16,
18, 19, 20

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Zip-nerf: Anti-aliased grid-
based neural radiance fields. In ICCV, 2023. 2, 7, 19

[4] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis,
Tero Karras, and Gordon Wetzstein. Efficient geometry-
aware 3d generative adversarial networks. In CVPR, 2022.
1, 2

[5] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
1, 2, 17, 19

[6] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, 2019. 2, 8

[7] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. ACM TOG,
1996. 1, 2, 6, 8

[8] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface
re-integration. ACM TOG, 2017. 1, 2, 6, 8

[9] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised nerf: Fewer views and faster train-
ing for free. In CVPR, 2022. 2

[10] Daniel Duckworth, Peter Hedman, Christian Reiser, Pe-
ter Zhizhin, Jean-François Thibert, Mario Lucic, Richard
Szeliski, and Jonathan T. Barron. SMERF: streamable mem-
ory efficient radiance fields for real-time large-scene explo-
ration. ACM TOG, 2024. 2

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 2,
7, 8, 17

[12] Qiancheng Fu, Qingshan Xu, Yew Soon Ong, and Wenbing
Tao. Geo-neus: Geometry-consistent neural implicit surfaces
learning for multi-view reconstruction. In NeurIPS, 2022. 2

[13] Benjamin Graham and Laurens Van der Maaten. Sub-
manifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017. 2, 8

[14] Antoine Guédon and Vincent Lepetit. Sugar: Surface-
aligned gaussian splatting for efficient 3d mesh reconstruc-
tion and high-quality mesh rendering. In CVPR, 2024. 2,
8

[15] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel J. Brostow. Deep blending for
free-viewpoint image-based rendering. ACM TOG, 2018. 7,
8, 20

[16] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. ACM TOG, 2024. 2, 6, 8

[17] Rasmus Ramsbøl Jensen, Anders Lindbjerg Dahl, George
Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale multi-
view stereopsis evaluation. In CVPR, 2014. 8, 16, 18, 19,
21

[18] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and
Niloy J. Mitra. Relu fields: The little non-linearity that could.
In ACM TOG, 2022. 3, 7, 12

[19] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In SGP, 2006. 2, 8

[20] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM TOG, 2023. 1, 2, 3, 4, 6, 7,
8, 14, 19, 20

[21] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: benchmarking large-scale scene
reconstruction. ACM TOG, 2017. 7, 8, 16, 18, 20, 21

[22] Samuli Laine and Tero Karras. Efficient sparse voxel octrees.
In ACM I3D, 2010. 2

[23] Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo
Kanazawa. Nerfacc: Efficient sampling accelerates nerfs.
In ICCV, 2023. 2

[24] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H. Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
CVPR, 2023. 1, 2, 8

[25] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 2

[26] Charles Loop, Qin Cai, Sergio Orts-Escolano, and Philip A
Chou. A closed-form bayesian fusion equation using occu-
pancy probabilities. In 3DV, 2016. 2, 8

[27] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In ACM
TOG, 1987. 6, 8

[28] Alexander Mai, Peter Hedman, George Kopanas, Dor
Verbin, David Futschik, Qiangeng Xu, Falko Kuester,
Jonathan T. Barron, and Yinda Zhang. Ever: Exact volumet-
ric ellipsoid rendering for real-time view synthesis. arXiv
preprint arXiv:2410.01804, 2024. 2, 19

9

[29] T. Berriel Martins and Javier Civera. Feature splatting for
better novel view synthesis with low overlap. In BMVC,
2024. 19

[30] Nelson L. Max. Optical models for direct volume rendering.
IEEE TVCG, 1995. 4, 13

[31] Duane Merrill and Andrew S. Grimshaw. Revisiting sorting
for GPGPU stream architectures. In ACM PACT, 2010. 14

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 3, 4, 7, 8, 13, 18, 19, 20

[33] Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Ric-
cardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja
Fidler, Nicholas Sharp, and Zan Gojcic. 3d gaussian ray trac-
ing: Fast tracing of particle scenes. ACM TOG, 2024. 2, 19

[34] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM TOG, 2022. 2, 7, 19

[35] Ken Museth. Vdb: High-resolution sparse volumes with dy-
namic topology. ACM TOG, 2013. 2

[36] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and track-
ing. In IEEE ISMAR, 2011. 1, 2, 8

[37] Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakoto-
saona, Michael Oechsle, Daniel Duckworth, Rama Gosula,
Keisuke Tateno, John Bates, Dominik Kaeser, and Federico
Tombari. Radsplat: Radiance field-informed gaussian splat-
ting for robust real-time rendering with 900+ FPS. arXiv
preprint arXiv:2403.13806, 2024. 2

[38] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM TOG, 2013. 2, 6, 8

[39] Lukas Radl, Michael Steiner, Mathias Parger, Alexan-
der Weinrauch, Bernhard Kerbl, and Markus Steinberger.
Stopthepop: Sorted gaussian splatting for view-consistent
real-time rendering. ACM TOG, 2024. 1, 2, 4, 19

[40] Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo
Molchanov. Am-radio: Agglomerative vision foundation
model reduce all domains into one. In CVPR, 2024. 1

[41] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 2

[42] Christian Reiser, Stephan J. Garbin, Pratul P. Srinivasan, Dor
Verbin, Richard Szeliski, Ben Mildenhall, Jonathan T. Bar-
ron, Peter Hedman, and Andreas Geiger. Binary opacity
grids: Capturing fine geometric detail for mesh-based view
synthesis. ACM TOG, 2024. 2

[43] Johannes L. Schönberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for
unstructured multi-view stereo. In ECCV, 2016. 2, 7, 19

[44] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
ICLR, 2015. 7

[45] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 1, 2, 3, 6, 7, 12, 17, 18

[46] Cheng Sun, Guangyan Cai, Zhengqin Li, Kai Yan, Cheng
Zhang, Carl S. Marshall, Jia-Bin Huang, Shuang Zhao, and
Zhao Dong. Neural-pbir reconstruction of shape, material,
and illumination. In ICCV, 2023. 1, 2

[47] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles T. Loop, Derek Nowrouzezahrai, Alec Jacob-
son, Morgan McGuire, and Sanja Fidler. Neural geometric
level of detail: Real-time rendering with implicit 3d shapes.
In CVPR, 2021. 2

[48] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake
Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A
modular framework for neural radiance field development.
In SIGGRAPH, 2023. 19

[49] Haithem Turki, Vasu Agrawal, Samuel Rota Bulò,
Lorenzo Porzi, Peter Kontschieder, Deva Ramanan, Michael
Zollhöfer, and Christian Richardt. Hybridnerf: Efficient neu-
ral rendering via adaptive volumetric surfaces. In CVPR,
2024. 2

[50] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In NeurIPS, 2021. 2, 6, 8

[51] Yiming Wang, Qin Han, Marc Habermann, Kostas Dani-
ilidis, Christian Theobalt, and Lingjie Liu. Neus2: Fast
learning of neural implicit surfaces for multi-view recon-
struction. In ICCV, 2023. 2

[52] Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas
Sharp, Jun Gao, Alexander Keller, Sanja Fidler, Thomas
Müller, and Zan Gojcic. Adaptive shells for efficient neu-
ral radiance field rendering. ACM TOG, 2023. 2

[53] Francis Williams, Jiahui Huang, Jonathan Swartz, Gergely
Klár, Vijay Thakkar, Matthew Cong, Xuanchi Ren, Ruilong
Li, Clement Fuji-Tsang, Sanja Fidler, Eftychios Sifakis, and
Ken Museth. fvdb : A deep-learning framework for sparse,
large scale, and high performance spatial intelligence. ACM
TOG, 2024. 2, 8

[54] Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Christian
Theobalt, Ziwei Liu, and Dahua Lin. Voxurf: Voxel-based
efficient and accurate neural surface reconstruction. In ICLR,
2023. 1, 2, 8

[55] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
José M. Álvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
In NeurIPS, 2021. 1

[56] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In NeurIPS, 2021.
2, 6

[57] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. In ACM TOG, 2023. 2

[58] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d
indoor scenes. In ICCV, 2023. 19

[59] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 2, 19

10

[60] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR, 2018. 7

[61] Qingtian Zhu, Zizhuang Wei, Zhongtian Zheng, Yifan Zhan,
Zhuyu Yao, Jiawang Zhang, Kejian Wu, and Yinqiang
Zheng. Rpgb: Towards robust neural point-based graphics
in the wild. In ECCV, 2024. 19

11

Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering

Supplementary Material

We provide more details of our method and implementa-
tion in Secs. A to C. Some content overlaps with the main
paper in the interest of being self-contained. More results
and discussion are found in Secs. D and E.

A. More Details of Our Representation

A.1. Details of Sparse Voxels Grid

Recall that our SVRaster allocates voxels following an Oc-
tree layout but does not replicate a traditional Octree data
structure with parent-child pointers or linear Octree. We
only keep voxels at the Octree leaf nodes without any an-
cestor nodes and store individual voxels in arbitrary order
without the need to maintain a more complex data structure.

The maximum level of detail is set to L=16 that defines
the finest grid resolution at 655363. Note that this is only
for our CUDA-level implementation convenience. We leave
it as future work to extend to an arbitrary number of levels
as we find that 16 levels are adequate for the scenes we ex-
perimented with in this work.

Let ws ∈ R be the Octree size and wc ∈ R3 be
the Octree center in the world space. The voxel index
v={i, j, k} ∈ [0, . . . , 2L−1]3 together with an Octree level
l ∈ [1, L] (l = 0 represent root node and is not used) define
voxel size vs and voxel center vc as:

vs = ws · 2−l , vc = wc − 0.5 ·ws + vs · v . (11)

Internally, we map the grid index to its Morton code by
a well-known bit interleaving operation, which is helpful
to implement our rasterizer detailed later. A Python pseu-
docode is provided in Listing 1.

A.2. Details of Voxel Alpha from Density

A voxel density field is parameterized by eight parameters
attached to its corners vgeo ∈ R2×2×2, which is denoted as
V for brevity in the later equations. We use the exponential-
linear activation function to map the raw density to non-
negative volume density. We visualize exponential-linear
and Softplus in Fig. 9. Exponential-linear is similar to Soft-
plus but more efficient to compute on a GPU. For a sharp
density field inside a voxel, we apply the non-linear activa-
tion after trilinear interpolation [18, 45].

We evenly sample K points in the ray segment of ray-
voxel intersection to derive the voxel alpha value contribut-
ing to the pixel ray. First, we compute the ray voxel inter-
section point by Listing 2, which yields the ray distances a
and b for the entrance and exit points along the ray with ray
origin ro ∈ R3 and ray direction rd ∈ R3. The coordinate

MAX_NUM_LEVELS = 16

def to_octpath(i, j, k, lv):
Input
(i,j,k): voxel index.
lv: Octree level.
Output
octpath: Morton code
octpath: int = 0
for n in range(lv):

bits = 4*(i&1) + 2*(j&1) + (k&1)
octpath |= bits << (3*n)
i = i >> 1
j = j >> 1
k = k >> 1

octpath = octpath << (3*(MAX_NUM_LEVELS-lv))
return octpath

def to_voxel_index(octpath, lv):
Input
octpath: Morton code
lv: Octree level.
Output
(i,j,k): voxel index.
i: int = 0
j: int = 0
k: int = 0
octpath = octpath >> (3*(MAX_NUM_LEVELS-lv))
for n in range(lv):

i |= ((octpath&0b100)>>2) << n
j |= ((octpath&0b010)>>1) << n
k |= ((octpath&0b001)) << n
octpath = octpath >> 3

return (i, j, k)

Listing 1. Pseudocode for conversion between voxel index and
Morton code. See Sec. A.1 for details.

def ray_aabb(vox_c, vox_s, ro, rd):
Input
vox_c: Voxel center position.
vox_s: Voxel size.
ro: Ray origin.
rd: Ray direction.
Output
a: Ray enter at (ro + a * rd).
b: Ray exit at (ro + b * rd).
valid: If ray hit the voxel.
c0 = (vox_c - 0.5 * vox_s - ro) / rd
c1 = (vox_c + 0.5 * vox_s - ro) / rd
a = torch.minimum(c0, c1).max()
b = torch.maximum(c0, c1).min()
valid = (a <= b) & (a > 0)
return a, b, valid

Listing 2. Pseudocode for intersecting ray and a axis-aligned
voxel. See Sec. A.2 for details.

12

of k-th of the K sample points is:

tk = a+
k − 0.5

K
· (b− a) (12a)

pk = ro + tk · rd (12b)

qk = (pk − (vc − 0.5 · vs)) ·
1

vs
, (12c)

where pk∈R3 is in the world coordinate and qk∈R3
∈[0,1] is

in the local voxel coordinate. The local coordinate q is used
to sample voxel by trilinear interpolation:

interp(V,q) =

(1−qx)·(1−qy)·(1−qz)

(1−qx)·(1−qy)·(qz)

(1−qx)·(qy)·(1−qz)

(1−qx)·(qy)·(qz)

(qx)·(1−qy)·(1−qz)

(qx)·(1−qy)·(qz)

(qx)·(qy)·(1−qz)

(qx)·(qy)·(qz)

⊺

V000

V001

V010

V011

V100

V101

V110

V111

, (13)

where the subscript in this equation indicates the x, y, z
components of the vector q and the sample index is omitted.
Following NeRF [30, 32], we use quadrature to compute the
integrated volume density for alpha value:

α = 1− exp

(
− l

K

K∑
k=1

explin (vk)

)
(14a)

vk = interp (V,qk) (14b)
l = (b− a) · ∥rd∥ , (14c)

where l is the ray segment length. The gradient with respect
to the voxel density parameters is:

∇V α = (1− α) · l

K
·

K∑
k=1

(
d

dvk
explin(vk) · ∇Vvk

)
.

(15)

A.3. Details of Voxel Normal

Recall that we approximate the normal field as constant in-
side a voxel for efficiency, which is represented by the ana-
lytical gradient of the density field at the voxel center q(c).
Thanks to the neural-free representation, we derive closed-
form equations for forward and backward passes instead of
relying on double backpropagation of autodiff. The unnor-
malized voxel normal in the forward pass is:

∇qinterp(V,q(c)) = 0.25 ·(V100+V101+V110+V111)−(V000+V001+V010+V011)

(V010+V011+V110+V111)−(V000+V001+V100+V101)

(V001+V011+V101+V111)−(V000+V010+V100+V110)

 (16)

4 2 0 2 4
x

0

1

2

3

4

5

y

Softplus (11.8M op / s)
Explin (21.5M op / s)

Figure 9. Activation functions. We use exponential-linear acti-
vation to softly map raw density to non-negative volume density.
Exp-lin activation is about two times faster to compute in CUDA,
which is 21.5M operations per second in a CUDA thread compar-
ing to 11.8M of Softplus. See Sec. A.2 for more details.

For the backward pass, the gradient with respect to a density
parameter is:

∇Vijk
∇qinterp(V,q(c)) = 0.25 ·

2i− 1
2j − 1
2k − 1

 . (17)

A.4. Details of Voxel Depth

Voxel depths are efficient to compute compared to view-
dependent colors and normals so we do the same K points
sampling as in the voxel alpha value. Unlike colors and
normals, which are approximated by constant inside each
voxel, the depth values of each sample point inside a voxel
are different so we need to incorporate the point depth in
Eq. (12a) into the local alpha composition in Eq. (14). Let

αk = 1− exp

(
− l

K
· explin (interp(V,qk))

)
(18)

be the alpha value of the k-th sampled point. The voxel
local depth is:

d =

K∑
k=1

k−1∏
j=1

(1− αj)

 · αk · tk . (19)

Finally, the pixel depth is composited by D=
∑N

i=1 Tidi from
the N voxels, where Ti is the ray transmittance when reach-
ing the i-th voxel described in the main paper.

We only experiment with K ≤ 3 in this work, where
the forward and backward equation of each case is sum-
marized as follows. The K=1 is trivial with d=α1t1 and
dd
dα1

=t1. In case K=2, the backward equations with voxel

13

depth d=α1t1 + (1− α1)α2t2 are:
dd

dα1
= t1 − α2t2,

dd

dα2
= t2 − α1t2 . (20)

The voxel depth when K=3 is:

d = α1t1 + (1− α1)α2t2 + (1− α1)(1− α2)α3t3 . (21)

The backward equations are:
dd

dα1
= t1 + α2α3t3 − α2t2 − α3t3 (22a)

dd

dα2
= t2 + α1α3t3 − α1t2 − α3t3 (22b)

dd

dα3
= t3 + α1α2t3 − α1t3 − α2t3 . (22c)

B. More Details of Voxel Rendering Order
Our sorting-based rasterizer is based on the efficient CUDA
implementation done by 3DGS [20]. In the following,
we first describe how the overall sorting pipeline works in
Sec. B.1. We then dive more into the implementation of the
direction-dependent Morton order in Sec. B.2 and its cor-
rectness proof in Sec. B.3.

A supplementary video is provided to show the effect of
correct ordering and a few popping artifacts in comparison
with 3DGS [20].

B.1. Overview
The goal in the sorting stage of the rasterizer is to arrange a
list of voxels in near-to-far order for each image tile. To this
end, 3DGS’s rasterizer duplicates a Gaussian for each im-
age tile the Gaussian covers. A key-value pair is attached to
each Gaussian duplication, where the tile index is assigned
as the most significant bits of the sorting key. The bit field
of the key-value pair is as follows:

key = | tile id︸ ︷︷ ︸
32 bits

|Gaussian z-depth︸ ︷︷ ︸
32 bits

| (23a)

value = |Gaussian id︸ ︷︷ ︸
32 bits

| (23b)

By doing so, all the duplicated Guassians assigned to the
same image tile will be in the consecutive array segment
after sorting with near-to-far z-depth ordering. In the later
rendering stage, each pixel only iterates through the list of
Gaussians of its tile for alpha composition.

In our case, we replace the primitive z-depth with a
direction-dependent Morton order of voxels to ensure the
rendering order is always correct. As there are eight dif-
ferent Morton orders to follow depending on the posi-
tive/negative signs of ray directions, dubbed ray sign bits,
we further duplicate each voxel by the numbers of different
ray sign bits it covers. The ray sign bits are also attached
to each duplicated voxel. In the rendering stage, a pixel
only composites voxels with the same attached ray sign bits

when there are multiple ray sign bits in an image tile. Our
bit field of the key-value pair is:

key = | tile id︸ ︷︷ ︸
16 bits

|Morton order︸ ︷︷ ︸
48 (=3L) bits

| (24a)

value = | ray sign bits︸ ︷︷ ︸
3 bits

| voxel id︸ ︷︷ ︸
29 bits

| (24b)

where L=16 is the maximum number of Octree levels. Note
that the “voxel id” here is indexed to the 1D array loca-
tion where we store the voxel. Not to be confused the
grid (i, j, k) index in Sec. A.1. The bit field arrangement
is mainly for our implementation convenient to squeeze
everything into 64 and 32 bits unsigned integers. In our
current implementation, the maximum number of tiles is
216=65536, which is 4096×4096 maximum image res-
olution with 16×16 tile size; the maximum grid resolu-
tion is (216)3=655363; the maximum number of voxels is
229≈500M . We find this is more than enough for the scenes
in our experiments. Future work can define custom data
types with extra bits for GPU Radix sort [31] to increase
the resolution limit.

B.2. Direction-dependent Morton Order
As described and illustrated in the main paper, there are
eight types of Morton order to follow, each of which is for a
certain type of positive/negative signs pattern of ray direc-
tions. We hard-code the eight types of Morton orders, which
is used to remap every non-overlapping three bits (corre-
sponding to different Octree levels) in the Octree Morton
code of voxels (Sec. A.1):

... bxbybz axayaz 7→ ... f (k)(bxbybz) f
(k)(axayaz) , (25)

where f (k) : [0 · · · 7] 7→ [0 · · · 7] is one of the eight per-
mutation mappings. The pseudocode for computing the
ray sign bits and the mapping function from Octree Mor-
ton code to direction-dependent Morton order is provided
in Listing 3.

B.3. Proof of Correct Ordering
We prove the ordering correctness by induction. We focus
on the case for (+,+,+) ray directions. The proof can be
generalized to the other types of ray direction signs by flip-
ping the scene. The Morton order of the eight voxels in the
first Octree level is illustrated in Fig. 10.

Recap that our sparse voxels only consist of the Octree
leaf nodes without any ancestor nodes. Let V ℓ be the space
of all valid sparse voxel sets with maximum Octree level
equal to ℓ. Let S(ℓ) be the statement that:

“For all sparse voxel sets in V ℓ, their direction-
dependent Morton order is always aligned with
the near-to-far rendering order for all rays with
(+,+,+) direction signs.”

14

MAX_NUM_LEVELS = 16
order_tables = [

[0, 1, 2, 3, 4, 5, 6, 7],
[1, 0, 3, 2, 5, 4, 7, 6],
[2, 3, 0, 1, 6, 7, 4, 5],
[3, 2, 1, 0, 7, 6, 5, 4],
[4, 5, 6, 7, 0, 1, 2, 3],
[5, 4, 7, 6, 1, 0, 3, 2],
[6, 7, 4, 5, 2, 3, 0, 1],
[7, 6, 5, 4, 3, 2, 1, 0],

]

def to_rd_signbits(rd):
Input
rd: Ray direction.
Output
signbits: Ray sign bits.
return 4*(rd[0]<0) + 2*(rd[1]<0) + (rd[2]<0)

def to_dir_dep_morton_order(octpath, signbits):
Input
octpath: Voxel Octree Morton code.
signbits: The signbits the voxel care.
Output
order: The order for sorting.
table = order_tables[signbits]
order = 0
for i in range(MAX_NUM_LEVELS):

order |= table[octpath & 0b111] << (3*i)
octpath = octpath >> 3

return order

Listing 3. Pseudocode for direction-dependent Morton order. The
mapping between voxel grid (i, j, k) index and Octree Morton
code octpath is detailed in Listing 1. In practice, the mapping
from Octree Morton code to direction-dependent Morton order is
done by a single bitwise xor operation instead of for-loop. More
details in Sec. B.2.

Base case. When ℓ=1, there is only one Octree level. The
direction-dependent Morton order of the eight voxels for
(+,+,+) ray directions is illustrated in Fig. 10. The bit
field from most to least significant bit is for x, y, and z di-
rections, respectively. As the ray is going toward +x di-
rection, we can always render the voxels in the −x side
(000, 001, 010, 011) first before the voxels in the +x side
(100, 101, 110, 111), which is aligned with the most signifi-
cant bit of the Morton order. Similarly, for the voxels in the
−x side, we can render the voxels in the −y side (000, 001)
before the +y side (010, 011) as the ray is going toward +y.
Finally, we can see that the rendering order is correct if we
iterate the voxels following the assigned Morton order for
ray with (+,+,+) directions.

Induction hypothesis. Assume that S(ℓ) is true for some
positive integer ℓ.

Induction step. We want to show S(ℓ) =⇒ S(ℓ + 1)
is true. For any sparse voxel set w ∈ V ℓ+1, there exists a
sparse voxel set v ∈ V ℓ that can evolve into w by: i) se-
lecting a subset of voxels in v to subdivide with the source

010 110

000 100

011 111

001 101
x

yz

Figure 10. Base case. Direction-dependent Morton order for
(+,+,+) ray direction signs under the base case with 1 Octree
level. The three bits from left to right is for the x, y, and z direc-
tions respectively. The rendering order is correct for all rays going
toward (+,+,+) direction. See Sec. B.3 for more details.

voxels removed and ii) removing some of the voxels. The
S(ℓ) indicates that the direction-dependent Morton order of
v has the correct rendering order. To extend for a new Oc-
tree level, three zero bits are first append to the least sig-
nificant bit of the Morton order of every voxel in v, which
does not affect the ordering. When subdividing a voxel, the
eight child voxels share the same most significant 3ℓ bits
as the source voxel, while the least significant 3 bits follow
the same direction-dependent Morton order as in the base
case Fig. 10. This reflects the fact that the new child vox-
els should keep the same relative order to the other voxels
as their source parent voxels as the child voxels are all in
the 3D space of the source voxels. The rendering order-
ing of the eight child voxels can also follow the same Mor-
ton order as the base case. That is the Morton order is still
rendering-order correct after subdividing some voxels in v.
Finally, removing voxels does not affect the ordering of the
remaining others. In sum, the Morton order of w also has
the correct rendering order so S(ℓ) implies S(ℓ + 1). By
induction, S(ℓ) is true for all positive integer ℓ.

C. Additional Implementation Details
We start the optimization from empty space with raw den-
sity set to hgeo=−10. We use spherical harmonic (SH)
with Nshd=3 degrees. The learning rate is set to 0.025
for the grid point densities, 0.01 for zero-degree SH coeffi-
cients, and 0.00025 for higher-degree SH coefficients. We
decay all learning rates by 0.1 at the 19K iteration. The
momentum and the epsilon value of the Adam optimizer
are set to (0.1, 0.99) and 1e−15. The initial Octree level
is hlv=6 (i.e., 643 voxels) for the bounded scenes and the
foreground main region of the unbounded scenes. To model
unbounded scenes, we use hout=5 background shell lev-
els with hratio=2 times the number of foreground voxels.
We use average frame color as the color coming from infi-

15

Resolution of main 2563 5123 10243 adaptive

LPIPS↓ 0.444 0.326
OOM

0.200
PSNR↑ 23.98 25.37 28.01
FPS↑ 457 190 171

Table 6. Ablation experiments of adaptive and uniform voxel
sizes. The resolutions at the first row indicate the final grid reso-
lution of the main foreground cuboid. Note that OOM is abbrevi-
ation of the term, ‘out-of-memory’.

nite far away for unbounded scenes. The early ray stopping
threshold is set to hT=1e−4 and the supersampling scale is
set to hss=1.5. Inside each voxel, we sample K=1 point
for novel-view synthesis and K=3 points for the mesh re-
construction task.

We train our model for 20K iterations. The voxels
are subdivided every hevery=1K iterations until 15K iter-
ations, where the voxels with top hpercent=5 percent pri-
ority are subdivided each time. We set hrate=1 and skip
subdividing voxels with a maximum sampling rate below
2hrate. The voxels are pruned every hevery=1K iterations
until 18K iterations, where voxels with maximum blend-
ing weights less than a pruning threshold are removed. The
pruning threshold is linearly increased from 0.0001 at the
first pruning to hprune=0.05 at the last pruning.

The loss weights are set to λssim=0.02, λT=0.01,
λdist=0.1 after 10K iterations, λR=0.01, λtv=1e−10 un-
til 10K iterations. For the mesh reconstruction task, the
weights for normal-depth alignment self-consistency loss
are set to λn-dmean=0.001 and λn-dmed=0.001 for mean
and median depth respectively. The initial depths and nor-
mals are bad so the two normal-depth consistency loss is
activated at the later training iterations. We find the median
depth converges the fastest so we activate median depth-
normal consistency loss at 3K iterations, which also only
regularizes the rendered depth as median depth is not dif-
ferentiable. The mean depth-normal consistency loss is ac-
tivated at 10K iterations.

D. Additional Ablation Studies

D.1. Novel-View Synthesis
We conduct comprehensive ablation experiments of our
method using the indoor bonsai and the outdoor bicycle
scenes from the MipNeRF-360 [2] dataset.

Adaptive voxel sizes. In the main paper, we show that
adaptive voxel size for different levels of detail is crucial
to achieve high-quality results. The results are recapped
in Tab. 6. We provide experiment details here. The start-
ing point of the main foreground region is the same for all
variants with 643 dense voxels. Regarding the background
region, using the same voxel size as the foreground region

is impracticable for uniform-sized variants. Instead, each
of the 5 background shell voxels is uniformly subdivided
by 4 times as initialization for all the variants. The differ-
ence is that the uniform-sized variants subdivide all vox-
els each time until the grid resolution of the main region
reaches 2563, 5123, or 10243 instead of subdividing vox-
els adaptively as described in the main paper. The pruning
setup remains the same for all variants. The result in Tab. 6
shows that adaptive voxel sizes are the key to solve the scal-
ability issue of uniform-sized voxel, which achieves much
better rendering quality with high render FPS.

More ablation studies for the hyperparameters. We
conduct more ablation experiments to show the effective-
ness of the hyperparameters in Tabs. 7 to 17. We mark the
adopted hyperparameter setup by “*” in the table rows. The
setup of the marked rows across different tables can be dif-
ferent as we update the base setups in a rolling manner dur-
ing the hyperparameter tuning stage. In each table, the other
hyperparameter setups except the ablated one are the same.
We discuss the experiments directly in the table captions to
avoid the need for cross-referencing between the tables and
the main text.

D.2. Mesh Reconstruction
To show the effectiveness of the mesh regularization losses,
we use the Ignatius and the Truck scenes from TnT [21]
dataset and three scans with id 24, 69, 122 from DTU [17]
dataset for ablation studies. The results are shown in
Tab. 18. While the normal-depth self-consistency losses
do not improve novel-view synthesis quality in Tab. 17, the
mesh accuracy is improved by an obvious margin with the
regularizations.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
no ss 111 13.5m 0.201 27.69 0.830
hss=1.01 108 13.5m 0.193 28.24 0.845
hss=1.10* 107 13.5m 0.190 28.32 0.848
hss=1.20 99 13.6m 0.188 28.36 0.849
hss=1.30 100 13.7m 0.187 28.39 0.850
hss=1.50 92 13.8m 0.186 28.42 0.851
hss=2.00 75 14.2m 0.185 28.46 0.853

Table 7. Supersampling rate. Our rendering suffers from alias-
ing artifact so we render the image in hss× higher resolution and
apply image downsampling with anti-aliasing filter. The quality
without supersampling is much worse than the others. Resampling
the image with a very small hss = 1.01 can already boost quality
significantly. We find the quality can keep going better with higher
hss but the FPS drops by more than 30% at hss = 2. More future
development is needed for a more efficient anti-aliasing rendering
of our method. We use hss = 1.1 for speed-quality trade-off.

16

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
Nshd=1 118 11.2m 0.201 27.43 0.840
Nshd=2 114 12.1m 0.193 27.94 0.847
Nshd=3* 107 13.5m 0.190 28.32 0.848

Table 8. Degree of Spherical Harmonic (SH). The rendering
time with higher SH degree is similar but the quality is much bet-
ter. We use Nshd=3 as our final setup. However, about 80% of
the parameters and the disk space is occupied by the SH coefficient
with Nshd=3. Future work may want to design a more parameters
efficient representation for view-dependent colors.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
K=1* 107 13.5m 0.190 28.32 0.848
K=2 102 13.8m 0.189 28.32 0.849
K=3 99 13.9m 0.189 28.33 0.849

K=1 K=3

iter=800 iter=800

iter=9800 iter=9800

Table 9. Number of sample points in a voxel when rendering.
The effect of sampling more point inside a voxel is marginal as
the voxels are typically subdivided into fine level with small size.
It mainly affects the depth rendering for larger voxels. The figure
shows the normal derived from the rendered depth. K=1 at the
early training stage produce noisy depth as highlighted by the red
arrow, while the depth noisy is mitigated when the voxels is subdi-
vided into finer level. We suggest to use K>1 only when the sub
voxel depth accuracy is required.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
hprune=0.01 96 16.7m 0.191 28.41 0.847
hprune=0.03 107 13.5m 0.190 28.32 0.848
hprune=0.05* 119 11.6m 0.192 28.20 0.846
hprune=0.10 158 9.1m 0.199 27.95 0.840
hprune=0.15 188 7.7m 0.212 27.72 0.831
hprune=0.20 213 6.8m 0.224 27.53 0.823
hprune=0.30 241 5.9m 0.248 27.22 0.806

Table 10. Pruning threshold. We prune voxels with maximum
blending weights below hprune. Higher FPS and faster process-
ing time can be achieved by pruning more voxels but with loss in
quality. We finally use hprune=0.05 to balance speed and quality.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
0.33 159 9.9m 0.210 27.98 0.833
0.50 130 11.2m 0.197 28.16 0.843
1.00* 107 13.5m 0.190 28.32 0.848
2.00 101 15.0m 0.190 28.36 0.848
3.00 101 15.7m 0.190 28.36 0.848

Table 11. Subdivision scale. We subdivide hpercent=5 percent
of the voxels with the highest priority 15 times during the train-
ing. As the number of voxels become (1 + 0.07hpercent) at
each subdivision, the subdivision scales in above table shows their
(1+0.07hpercent)

15

1.3515
, which indicate the expected relative number of

voxels comparing to the base setup. The merit of subdividing more
voxels each time is marginal comparing to the base setup.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
hratio=1.0 120 11.6m 0.195 28.17 0.844
hratio=2.0* 107 13.5m 0.190 28.32 0.848
hratio=3.0 103 14.7m 0.189 28.35 0.849
hratio=4.0 103 15.5m 0.189 28.38 0.849

Table 12. Initial ratio of the number of voxels in background
and main regions. At the initialization stage, we heuristically
subdivide voxel in the background region until the ratio of the
number of voxel is hratio to the foreground region. The overall
result quality are similar for different hratio. It affects training
time more than testing FPS as the training iterations per second
before any pruning is depend on the initial number of voxels.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λtv=0 102 14.0m 0.202 27.77 0.832
λtv=1e−11 106 13.6m 0.196 27.97 0.840
λtv=1e−10* 107 13.5m 0.190 28.32 0.848
λtv=1e−9 99 15.5m 0.213 27.85 0.822

iter=8800 iter=9800 iter=10800 iter=11800

Table 13. Total Variation (TV) loss. Similar to previous grid-
based approaches [5, 11, 45], TV loss is also important in our
method. We apply TV loss on density grid only for the first half
10,000 iterations as applying TV for all iterations leads to blurrier
rendering. TV with proper loss weighting leads to better quanti-
tative results without loss of speed. The effect of TV loss is also
visualized in above figure, where many geometric details emerge
after the TV loss is turned off. The employed TV loss scheduling
entails the coarse-to-fine optimization strategy.

17

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λR=0 111 14.6m 0.200 28.11 0.843
λR=1e−4 110 14.6m 0.199 28.11 0.843
λR=1e−3 107 14.5m 0.196 28.20 0.845
λR=1e−2* 107 13.5m 0.190 28.32 0.848
λR=1e−1 118 10.9m 0.205 27.77 0.830

Table 14. Color concentration loss. We find it helpful to apply
L2 loss directly between observed pixel color and the individual
voxel color of each voxel passing by the ray [45], which slightly
improve training time and result quality.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λdist=0 105 14.9m 0.199 27.27 0.839
λdist=1e−4 106 15.4m 0.199 27.48 0.839
λdist=1e−3 105 15.1m 0.195 27.97 0.842
λdist=1e−2 107 13.5m 0.190 28.32 0.848
λdist=1e−1 137 9.9m 0.256 26.34 0.760
λdist=1e−4 from 10K 104 15.1m 0.199 27.40 0.839
λdist=1e−3 from 10K 105 15.0m 0.197 27.76 0.842
λdist=1e−2 from 10K 105 14.6m 0.193 28.08 0.845
λdist=1e−1 from 10K* 113 13.7m 0.188 28.11 0.848

0.01 0.10 from 10K

Table 15. Distortion loss. Distortion loss is proposed by
MipNeRF-360 [2] and employed by many NeRF-based rendering
approaches to encourage concentration of the blending weight dis-
tribution on a ray. We find distortion loss is also helpful in our
method, especially for the PSNR. We also find that employing a
larger distortion loss weight after the total variation loss is turned
off lead to a cleaner geometry as shown in the above depth-derived
normal visualization.

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
λT=1e−0 109 13.4m 0.192 28.23 0.847
λT=1e−3 109 13.5m 0.191 28.25 0.847
λT=1e−2* 107 13.5m 0.190 28.32 0.848
λT=1e−1 109 12.8m 0.192 28.13 0.845

Table 16. Transmittance concentration loss. The effect of
encouraging final ray transmittance to be either zero or one is
marginal in the unbounded scenes. We find this loss is more im-
portant for the object-centric scenes with foreground region only
and known background colors (e.g., Synthetic-NeRF dataset [32]).

Setup FPS↑ Tr. time↓ LPIPS↓ PSNR↑ SSIM↑
neither* 107 13.5m 0.190 28.32 0.848
n-dmed 114 13.5m 0.191 28.10 0.849
n-dmean 97 14.0m 0.190 28.14 0.850
both 103 14.4m 0.191 27.99 0.849

neither both

Table 17. Mesh regularization losses for novel-view synthesis.
We also try the normal-depth self-consistency losses for novel-
view synthesis task. Despite of loss a little in PSNR, the regular-
ization can make the rendered normals much smoother as shown
in the visualization.

TnT dataset DTU dataset

Ln-dmed Ln-dmean K F-score↑ Tr. time↓ Cf.↓ Tr. time↓
3 0.56 10.1m 0.94 5.5m

✓ 3 0.59 10.1m 0.68 5.5m
✓ 3 0.61 10.6m 0.68 5.7m

✓ ✓ 1 0.61 10.7m 0.66 5.8m
✓ ✓ 2 0.61 10.8m 0.65 5.9m
✓ ✓ 3 0.62 10.9m 0.65 6.0m

Table 18. Mesh regularization losses. We show the results of
the mesh regularization losses and the number of sample points
when rendering a voxel on a subset of Tanks&Temples [21] and
DTU [17] datasets.

18

3DGS variants Ours

Method 3DGS [20]† StopThePop [39]† 3DGRT [33] EVER [28] fast-rend base
No popping △ △ ✓ ✓ ✓

FPS↑ 131 94 43‡ 20‡ 258 121
LPIPS↓ 0.257 0.251 0.248 0.233 0.249 0.219
PSNR↑ 27.45 27.35 27.20 27.51 26.87 27.33
SSIM↑ 0.815 0.816 0.818 0.825 0.804 0.822
† Re-evaluated on our machine using the public code.
‡ We scale the FPS to align their reported 3DGS FPS to our reproduced 3DGS.

Table 19. Comparison with 3DGS variants tackling popping
artifact on Mip-NeRF360 dataset [2]. The LPIPS values here
are evaluated with the correct intensity scale between [−1, 1] fol-
lowing EVER [28]. 3DGRT and EVER use ray tracing approach
instead of rasterization. EVER solves the Gaussians ordering and
overlapping issues but sacrificing more FPS.

E. More Results

Comparison with popping-resistant 3DGS variants.
More comparisons with recent 3DGS variants are in
Tab. 19. 3DGS [20] has popping artifacts due to the or-
dering and overlapping issues. StopThePop [39] uses run-
ning sort and 3DGRT [33] uses ray tracing for accurate
ordering but drops FPS by 28% and 67% respectively.
EVER [28] further handles the Gaussian overlapping cases
but with even less FPS. Our method ensures correct order-
ing (Sec. 3.1.2) with FPS and quality comparable to the
original 3DGS.

Results on Scannet++. Scannet++ [58] is a large-scale
dataset covering various types of indoor scenes. To recon-
struct the bounded indoor environments, we heuristically
set the scene center as the camera centroid and the scene ra-
dius as twice the maximum camera distance from the cen-
troid. The voxel grid starts at 643 without a background
region. Additionally, we implement ray density ascending
regularization and a spherical harmonic reset trick, which
we find improves results on the public validation set. The
result on the held-out test-set is shown in Tab. 20. Our
method achieves good results on all metrics. Some indoor
fly-through videos are provided in the released code.

Results breakdown for novel-view synthesis. In Tab. 21,
we show details per-scene comparison with 3DGS [20] us-
ing our base setup. Our method uses much more primitives
(i.e., voxels or Gaussians) compared to 3DGS on all the
scenes. However, our average rendering FPS is still compa-
rable to 3DGS. We find the FPS is scene-dependent, where
we achieve much faster FPS on some of the scenes while
slower on the others. Our method generally uses short train-
ing time. Regarding the quality metrics, our results are typ-
ically −0.2db PSNR and −0.01 SSIM behind 3DGS, while
our LPIPS is better on average.

As discussed in the main paper, not only the scene rep-
resentation itself affects the results, but the optimization
and adaptive procedure are also an important factor. The
strategy of adding more Gaussians progressively is not ap-

Method LPIPS↓ PSNR↑ SSIM↑

Small set (12 scenes)

Plenoxels [59] 0.399 22.177 0.841
TensoRF [5] 0.404 23.524 0.857
INGP [34] 0.363 23.695 0.871
Zip-NeRF [3] 0.320 24.630 0.887
Nerfacto [48] 0.340 23.498 0.868
3DGS [20] 0.312 23.389 0.876
FeatSplat [29] 0.303 24.177 0.880
RPBG [61] 0.271 24.005 0.882
Ours 0.300 24.365 0.886

Full set (50 scenes)

TensoRF [5] 0.406 24.022 0.850
Zip-NeRF [3] 0.325 25.041 0.880
3DGS [20] 0.319 23.893 0.871
Ours 0.313 24.709 0.874

Table 20. Scannet++ [58] indoor dataset. The test-set images
are not released to prevent overfitting. We submit our rendering
results to the scannet++ official website for a 3rd-party evaluation.
The online benchmark is: https://kaldir.vc.in.tum.de/

scannetpp/benchmark/nvs. In average, our training time is
12 minutes per scene; our rendering FPS is 197 at 1752 × 1168
resolutions. Voxel size statistic is: 13.61% <3mm, 19.25% 3-
5mm, 32.43% 5mm-1cm, 23.31% 1-2cm, 6.66% 2-3cm, 4.73%
>3cm. We do not use the sparse points prior from COLMAP [43]
in this submission.

plicable to ours. We also have not explored to use of the
coarse geometry estimated from SfM, while 3DGS uses
SfM sparse points for initialization. As the first attempt
of marrying rasterizer with fully explicit sparse voxels for
scene reconstruction, there is still future potential for im-
provement from different aspects.

Results breakdown for mesh reconstruction. The F-
score and chamfer distance of each scene from the
Tanks&Temples and DTU [17] datasets are provided in
Tab. 23. We only list the two representative NeRF-based
methods and two GS-based methods in the result break-
down comparison. More methods with the average scores
are in the main paper.

Synthetic dataset. The results on the Synthetic-
NeRF [32] dataset is provided in the last section of Tab. 22.
We achieve good quality, high FPS, and fast training on
this dataset. However, our quality is slightly worse than
3DGS [20] with slower FPS. Our development mainly
focuses on real-world datasets. Future work may need
more exploration to continue development on this dataset.

More qualitative results We show qualitative compari-
son with 3DGS [20] on indoor and outdoor scenes in Fig. 11
and Fig. 12, respectively. Our visual quality is on par
with 3DGS. We provide the visualization of the raw recon-
structed meshes in Fig. 13. For quantitative evaluation, we
follow previous works to apply mesh cleaning with the pro-

19

https://kaldir.vc.in.tum.de/scannetpp/benchmark/nvs
https://kaldir.vc.in.tum.de/scannetpp/benchmark/nvs

FPS↑ Tr. time↓ (mins) LPIPS↓ PSNR↑ SSIM↑ # prim.↓
Scene 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours

MipNeRF-360 [2] indoor scenes

bonsai 215 128 18.3 15.3 0.204 0.171 31.89 31.51 0.942 0.944 1.2M 6.6M
counter 160 85 20.7 18.7 0.199 0.176 29.03 28.72 0.909 0.905 1.2M 8.4M
kitchen 128 78 25.0 17.8 0.126 0.112 31.47 31.29 0.927 0.934 1.8M 9.2M
room 153 131 21.1 17.1 0.218 0.185 31.44 31.10 0.919 0.924 1.5M 8.9M

MipNeRF-360 [2] outdoor scenes

bicycle 72 147 31.9 13.5 0.211 0.190 25.18 25.29 0.765 0.773 6.1M 9.2M
garden 81 118 33.1 12.4 0.107 0.106 27.39 27.31 0.867 0.865 5.9M 9.6M
stump 110 129 25.5 13.0 0.216 0.206 26.61 26.38 0.772 0.769 4.9M 9.2M
treehill 123 157 22.4 13.7 0.327 0.262 22.47 22.74 0.632 0.646 3.7M 9.4M
flowers 137 120 22.0 14.4 0.335 0.268 21.57 21.72 0.606 0.637 3.6M 9.4M

DeepBlending [15] indoor scenes

drjohnson 116 297 25.0 8.7 0.244 0.242 29.11 29.22 0.901 0.892 3.3M 6.8M
playroom 163 308 19.7 7.4 0.244 0.211 30.08 30.53 0.907 0.900 2.3M 6.3M

Tanks&Temples [21] outdoor scenes

train 206 127 11.3 11.4 0.206 0.186 22.11 21.26 0.816 0.813 1.1M 8.3M
truck 154 129 16.3 11.0 0.147 0.100 25.40 25.00 0.882 0.888 2.6M 9.0M

Table 21. Real-world datasets for per-scene side-by-side comparison with 3DGS [20]. Our result here is the base setup. We show
average results of our 2x faster rendering and 3x faster training variants in the main paper.

FPS↑ Tr. time↓ (mins) LPIPS↓ PSNR↑ SSIM↑ # prim.↓
Scene 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours 3DGS ours

Synthetic-NeRF [32] object scenes

chair 418 197 5.4 4.6 0.012 0.013 35.89 35.91 0.987 0.986 0.3M 3.0M
drums 406 241 5.8 4.1 0.037 0.043 26.16 26.09 0.955 0.947 0.3M 2.3M
ficus 476 360 5.0 3.1 0.012 0.014 34.85 34.37 0.987 0.984 0.3M 1.3M
hotdog 596 218 5.2 4.8 0.020 0.019 37.67 37.42 0.985 0.984 0.1M 2.8M
lego 415 156 5.9 5.8 0.015 0.016 35.77 35.54 0.983 0.981 0.3M 4.3M
materials 575 213 5.3 4.5 0.034 0.037 30.01 30.00 0.960 0.954 0.3M 2.7M
mic 344 328 5.6 3.0 0.006 0.007 35.38 36.00 0.991 0.992 0.3M 1.1M
ship 254 111 7.9 8.6 0.107 0.106 30.92 30.38 0.907 0.886 0.3M 5.7M

Table 22. Synthetic object-centric dataset for per-scene side-by-side comparison with 3DGS [20]. Our overall quality is slightly worse
than 3DGS on this dataset while the synthetic object-centric scenario is off our main focus.

vided bounding box or masks. Despite the good quantitative
results for meshes, some apparent artifacts can be observed
from the visualization. In particular, our method focuses
more on the geometric details and sometimes over-explains
the texture on a flat surface with complex geometry. Future
work may want to model a signed distance field instead of
our current density field and introduce surface smoothness
regularizers.

20

Tanks&Temples F-score↑ DTU Chamfer Cistance↓
Method Barn Caterpillar Courthouse Ignatius Meetingroom Truck 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122

NeuS 0.29 0.29 0.17 0.83 0.24 0.45 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54
Neuralangelo 0.70 0.36 0.28 0.89 0.32 0.48 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43
3DGS 0.13 0.08 0.09 0.04 0.01 0.19 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50
2DGS 0.41 0.23 0.16 0.51 0.17 0.45 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52
ours 0.35 0.33 0.29 0.69 0.19 0.54 0.61 0.74 0.41 0.36 0.93 0.75 0.94 1.33 1.40 0.61 0.63 1.19 0.43 0.57 0.44

Table 23. Result breakdown on Tanks&Temples [21] and DTU [17] datasets.

21

GT Ours 3DGS

Figure 11. Qualitative novel-view rendering results on-par with 3DGS.

22

GT Ours 3DGS

Figure 12. Qualitative novel-view rendering results on-par with 3DGS.

23

Figure 13. Qualitative results of the reconstructed mesh.

24

	Introduction
	Related Work
	Approach
	Sparse Voxels Rasterization
	Scene Representation
	Rasterization Algorithm

	Progressive Sparse Voxels Optimization
	Scene Initialization
	Adaptive Pruning and Subdivision
	Optimization objectives
	Sparse-voxel TSDF Fusion and Marching Cubes

	Experiments
	Implementation Details
	Novel-view Synthesis
	Ablation Studies
	Mesh Reconstruction
	2D Feature Fusion
	Conclusion
	More Details of Our Representation
	Details of Sparse Voxels Grid
	Details of Voxel Alpha from Density
	Details of Voxel Normal
	Details of Voxel Depth

	More Details of Voxel Rendering Order
	Overview
	Direction-dependent Morton Order
	Proof of Correct Ordering

	Additional Implementation Details
	Additional Ablation Studies
	Novel-View Synthesis
	Mesh Reconstruction
	More Results

